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Slow steady rotation of axially symmetric bodies 
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The Stokes flow problem is considered here for the case in which an axially 
symmetric body is uniformly rotating about its axis of symmetry. Analytic 
solutions are presented for the heretofore unsolved cases of a spindle, a torus, a 
lens, and various special configurations of a lens. Formulas are derived for the 
angular velocity of the flow field and for the couple experienced by the body in 
each case. 

1. Introduction 
The value of the couple experienced by axially symmetric bodies, rotating 

steadily in a viscous and incompressible fluid, is needed in designing and 
calibrating viscometers. Therefore, many attempts have been made to evaluate 
such a couple for various bodies of revolution. When inertial effects can be validly 
ignored, so that Stokes’s linearized theory applies, the solutions have been found 
for some configurations. These configurations are a sphere (Lamb 1945), spheroids 
and a pair of spheres (Jeffery 1915). Jeffery has also given the solution for a 
circular disk as a limiting case of the solution for an oblate spheroid. The value of 
the angular velocity of the flow has also been calculated for each of the above- 
mentioned cases by the same authors. 

The purpose of this paper is to discuss the flow when a spindle, a torus and a 
lens are rotating steadily in an incompressible viscous fluid. Various special 
configurations of a lens, e.g. a hemisphere and a spherical cap, are also considered 
and explicit calculation of the couple has been made in each of these cases. 
Following other workers in the field, we assume the motion to be slow enough to 
justify the neglect of the inertial terms in the Navier-Stokes equations. 

The procedure for solving the present problem is similar to the one given by 
Payne & Pel1 (1960). They have discussed the Stokes flow problem of axially 
symmetric bodies when the flow at points distant from the body is uniform and 
parallel to the axis of symmetry. They solve their problem with the help of the 
generalized axially symmetric potential theory. Furthermore, they derive a 
relation between the drag on a body and the stream function of the flow. In  
the present analysis we find a corresponding relation between the couple experi- 
enced by a body and the angular velocity of the flow. Furthermore, it  is found in 
the following analysis that there is a relation between such a couple on a body and 
the polarization potential of that body. 
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The known cases of spheroids and a pair of spheres can be solved in a relatively 
simple way by this method. Since the simplicity of this method in solving these 
cases has been demonstrated by Payne & Pell, we omit the solutions for these 
configurations in the present work. The other two known cases, namely, a sphere 
and a circular disk, are briefly mentioned in the following work since they form 
special cases of a lens and thus provide a check on our analysis. 

2. Equations of motion 
Let the z-axis be the axis of symmetry and the x- and y-axes be mutually ortho- 

gonal axes in a plane perpendicular to the z-axis. Let ui (i = 1, 2, 3) denote the 
components of the velocity vector, p the pressure, and ,a the coefficient of vis- 
cosity. Then for rotation about the z-axis, the Stokes-flow equations in a region 
9 exterior to a closed boundary B may be expressed as 

@ui = p,i (ui,i = 0)s 

where we have used the summation convention. On B 

u1 = -way, u2 = wox, us = 0, (2) 

where w, is the uniform angular velocity of the body of revolution. 
These equations can be satisfied if we choose 

u1 = - o ~ $ ~ ,  u2 = oo$l, u3 = 0, p = constant, (3) 

(4) 
$1 = x ,  $2 = y, on B. ? 

Clearly $1 and $2 are polarization potentials (SchiEer & SzegG 1949) and are 

where A$l = 0, A$2 = 0, in 

By this choice ofui, the equation of continuity may be automatically satisfied. 

of the form 
(5) 

X Y 
$1 = 2 w, 21, $2 = ;;i Q(ry 4, 

where r2 = z2+ y2 and R satisfies the equation 

This equation could also have been derived in a different way (Kanwal 1955). 
If w denotes the angular velocity of the flow, then we observe that w/wo = Q/r2.  
Moreover, from (4) we find that 

R = r2 on B. (7) 

3. Couple on an axially symmetric body 
Payne & Pell have given an elegant formula for the drag experienced by an 

axially symmetric body in terms of the stream function. We now derive a 
similar formula for the couple in terms of the angular velocity of the flow. The 
value of the couple can, however, be found in another way also. It turns out that 
the couple on a body in the present problem can be related to the polarization 
of that body. Furthermore, since there is a tie between the polarization and the 
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virtual mass of a body (Payne 1956), we can get a relation between the couple on 
a body and the virtual mass of that body. We first set out to investigate these 
relations. 

Now the couple N is given by the expression 

where we have adopted the summation convention. If we put 
,-,-,- 

= f i ~ 0 ~ ; 0 ( + ~ + ~ ( + 2 ) 1  +/"ss ui~uj,inj-Wj,jnild~, (10) 
"0  B 

where n, are the components of the unit normal to B. The integral over B involves 
only u, and its tangential derivatives so that we may replace u, throughout by its 
boundary values. Thus 

= 2fi",[P+ V ] ,  (11) 

where V is the volume of the body B and P = 

normalized polarization. Now Schiffer & Szego (1949) have shown that 
= D(+2) is the suitably 

P+V = 4rex = 47reY, (12) 

N = 8.n;uw0e,. (13) 

where ex and e, are the dipole coefficients. Thus 

In their paper, Schiffer & Szego have tabulated e, for spheroids, spindle, torus, 
two spheres, and lenses, giving several particular examples for the lens. 

If the meridian section (r > 0) of 9 is simply connected, then it has been shown 
by Payne (1956) that the virtual mass M ,  due to a potential flow along the z-axis, 
is given by the relation 

Thus from (11) and (14) we get the relation between the couple and the virtual 
mass as 

In a previous paper (1952) Payne has calculated the value of the virtual mass for 
the oases of a spindle and a lens. 

We finally derive the value of the couple in terms of the angular velocity w 

P+ v = 2 ( M +  V ) .  (14) 

N = 4pw,(M+ V ) .  (15) 

of the flow. 'The relation 

where C =  

(8) can be written as 

fl = C-t4f iWo~,  
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In  view of the axial symmetry we may restrict attention to any single meridian 
half plane (r > 0). Now let B* denote the curve of intersection of the boundary B 
of the body with this half plane and let R be the region in (r > 0) bounded by B* 
and a large semicircle r whose radius we shall ultimately let tend to infinity. 

FIGURE 1. Configuration of flow field in meridian half plane. 

The relation (17) then becomes 

where the normal is directed outwmd from R. The integral along r = 0, between 
B* and I' vanishes since IR is O(r2) as r -+ 0 (Hyman 1954). Since L-,R = 0, the 
relation (18) gives 

But since both r2 and a satisfy the equation (6), we have from Green's second 
identity 

From (19) and (20) we get 

Letting the radius of r tend to infinity and noting that as p2 = r2 + z2 -+ co 

!&-to($), br2 

P3 
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we have 

= -4j-J 
r dzdr t- 4b, 

interior of P 

- - -- 2 V + 4 b .  
n 

Finally from (16), (22 )  and (23 )  we have our result: 

N = 8n,uw0 lim (24 )  
P - t W  

It is of interest to compare it with the formula for the drag given by Payne & 
Pel1 ( 1960) : 

We now turn to the consideration of a specific flow configuration. 

4. The flow about a rotating spindle 
A curve = to in dipolar co-ordinates defines the profile of a spindle. The 

dipolar transformation is given by 

z+ir = iccot&([+iq), (25 )  

where c is a positive constant. The range of co-ordinates is chosen as - 00 < q < 00, 

0 < 5 < n. The boundary of the spindle is given by [ = co < n, and the exterior 
region is defined by 0 < 5 < to. Let us put 

s = Coshv, t = C O S ~ .  

We assume the solution of the equation (6 )  in the form 

where (Q) denotes the qth partial derivative with respect to the argument and 
K,(t) is a Legendre function of a complex degree commonly called a conal 
function (Hobson 1931, p. 445) .  It is defined as 

If we replace f by (n - 5) in ( 2 7 ) ,  we obtain 

The boundary condition gives the value of A(a) occurring in the equation (26 ) ,  
and the complete solution to our problem is 

K p  ( - to)  Kk') ( t )  cos ay 
a. 

J0 Kt)(to)coshan = 2+(s - t )+r2  

The couple experienced by the spindle is given by the formula 
" ( 4 a 2 + 1 ) K b " ( - f O f d a .  I0 K;) (to) cosh an N = 8npw0c3 
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5. The flow about a rotating lens-shaped body 
Let us introduce the peripolar transformation 

z+ir = -ccotB(E+iq), (31) 

where c is a positive constant. The profile of a lens is defined by two curves 
= t2. We shall assume that 0 < El < f z  < 2n. The external region 

is chosen as 17 > 0. 
= El, and 

Let us assume the solution of the equation (6) in the form 

J O  

where the quantities s, t and@) are the same as defined in the previous section. The 
function K,(s) is 

7T 
[2 cosh u + 2 cosh 171-4 cos audu. (33) 

Furthermore, the quantity P(a, E )  is assumed to be of the form 

P(a, 6 )  = {A@) cosh at + B(a) sinh LYE}. (34) 

It can be shown that (Hobson 1931, p. 451) 

If we differentiate this relation with respect to s, we obtain 

O0 cash a(< - n) 
[2(s-t)]-8 = - - - -- Kg)(s) da. 

Jo coshan 
With the help of the above relation, the boundary condition provides the 

sinh a( 277 - t2 + El) P(a, 6 )  
expression for F(a, t), as 

= sinha(E,-E) co~ha(n.-(~)+ cosha(n-El)sinha(2n-E2+E). (37) 

The corresponding couple is 

N = ti7Tp0,c3/0m {sinha&cosha(n-&) +cosha(n-~,)sinha(27~-~~)}(4a~+ 
sinh a(2n + El - E2) cosh an 

(38) 

6. Special cases of the lens 
(a) Hemisphere. In  this case El = in, E2 = n. The expression (37) becomes 

(39) 
an 

Similarly, the expression for the couple is obtained as 

8(135-592/3) 
81 N =  77pwOc3, 

= 1 0 . 1 8 , ~ ~ ~ ~ ~ .  
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( b )  The symmetrical (biconvex) lens. In  this instance, if E = El is one face of 
the lens, then the other is ( = E2 = 2n - El. Thus, from the expressions (37) and (38 )  
we have the corresponding values of the quantity F(a, E) ,  and the couple N ,  as 

cosh a&F(a, 6) = cosh a(n - El) coshaE, (41) 

and N = 8 n , ~ w , c ~ J ~ ~  (4a2+ 1) (1 -tanhantanha&)da. (42) 

In  the case of a sphere El = 27r, so the expression (41 )  gives 
P(a, 5) = CoshaE. 

Thus from the equation (32), we obtain 
00 

Cl = 2*(s - t)* r2 [ cosh a6 sechanKE)(s) da. (43) 
J o  

If we put [ for ( E  - n) in the relation (36) ,  we readily derive the result 

[2(s + t)]-* = -Jam cosh at sech amKt) (s) da. 

From (43 )  and (44), we finally have 
(s - t)* 

(8 + t)* 
Q =  - r2 -  

(44) 

( 45) 

If a is the radius of the sphere, then ( ~ / a ) ~  = (s + t ) / ( s  - t ) .  Therefore, we get the 
well-known results a3 

Q = r2- 
P3’ 

(46 )  

and N = 8npw0n3. (47 )  
(c) Spherical cap. If €j2 = El, the two bounding surfaces of the lens coincide, 

the body becomes a portion of a spherical surface bounded by a circle of latitude 
and we have a spherical cap. The expression for F(a,  c)  is given by the equation 
(37 )  with E2 = El. The value of the couple is 

N = 4VwoC3 (f”(61) +f&) +&] (48)  
1 

where (49) 

When t1 + m, we get the case of the circular disk and N becomes 

which is we11 known. Finally, when &-+&T, the cap becomes hemispherical 
and the couple in this case is given as 

N = ~$-T,LLw,c~, (50) 

7. The flow about a rotating torus 

6, y in a meridian plane by the transformation 
In  order to calculate the flow about a torus, we introduce toroidal co-ordinates 
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The curves 7 = constant in r 2 0 are circles which nest about (0, c) .  Hence, any 
curve 7 = q0 = constant, defines the boundary of a torus whose exterior is given 

by 702720, 0,<6<27T. 

We assume the solution to be given as 
m 

n=O 
f2 = r2(s-t)* x’ A,P$L*(s)cosnE, (53) 

where C’ indicates that the term for n = 0 is to be multiplied by the factor 4. 
The boundary condition gives 

m 

n= 0 
(so - t)-* = X’ A,PgL* (so) cos nt. 

Ifwe differentiate therelation (Hobson 1931, p. 443) 

(8 - t)-fr = - 2J2 5 ~ ~ - 8  (8) cos nt, 

(s-tt)-) = -__ 4J2 2‘ QELi (s) cos nt. 

n=O 
with respect to s, we have 

n=O 

From (54) and (56) we obtain the value of A, as 

The couple experienced by the torus is 

(54) 

Finally, I wish to thank Prof. L. E. Payne for his very generous help in the 
preparation of this article. 
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